Neural Collaborative Filtering is a cutting-edge approach that leverages deep learning to model user-item interactions, uncovering intricate patterns through neural networks. Typically, this method involves feeding user and item embeddings into a Multi-Layer Perceptron (MLP).
Example: Implementing Neural Collaborative Filtering using Keras
python
Copy code
from tensorflow.keras.layers import Input, Embedding, Flatten, Dense, Concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
# Define number of users, items, and embedding dimension
n_users = 100
n_items = 100
embedding_dim = 50
# User input and embedding
user_input = Input(shape=(1,))
user_embedding = Embedding(n_users, embedding_dim)(user_input)
user_embedding = Flatten()(user_embedding)
# Item input and embedding
item_input = Input(shape=(1,))
item_embedding = Embedding(n_items, embedding_dim)(item_input)
item_embedding = Flatten()(item_embedding)
# Concatenate embeddings and pass through dense layers
concat = Concatenate()([user_embedding, item_embedding])
dense1 = Dense(128, activation='relu')(concat)
dense2 = Dense(64, activation='relu')(dense1)
output = Dense(1, activation='sigmoid')(dense2)
# Define and compile the model
model = Model([user_input, item_input], output)…
Sign Up For Daily Newsletter
Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.